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Abstract

This paper describes an efficient technique for estimating, via simulation, the prob-

ability of buffer overflows in a queueing model that arises in the analysis of ATM

(Asynchronous Transfer Mode) communication switches. There are multiple streams

of (autocorrelated) traffic feeding the switch that has a buffer of finite capacity. Each

stream is designated as either being of high or low priority. When the queue length

reaches a certain threshold, only high priority packets are admitted to the switch's

buffer. The problem is to estimate the loss rate of high priority packets. An asymptoti-

cally optimal importance sampling approach is developed for this rare event simulation

problem. In this approach, the importance sampling is done in two distinct phases. In

the first phase, an importance sampling change of measure is used to bring the queue

length up to the threshold at which low priority packets get rejected. In the second

phase, a different importance sampling change of measure is used to move the queue

length from the threshold to the buffer capacity.
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1 Introduction

This paper is concerned with efficient simulation techniques for estimating very low packet

loss rates, e.g. less than 10-9, in models of ATM (Asynchronous Transfer Mode) commu-

nications switches. Such low packet loss rates are deemed a requirement in ATM networks

and there is currently great interest in quantitative methods for analyzing the performance

of ATM models. Standard simulation of such rare events is known to take a prohibitive

amount of time. Therefore, research has focused on how to apply a general technique called

importance sampling (23, 25] so as to speed up the simulation of such rare events. A survey,

with numerous references, on the application of importance sampling to rare event simu-

lation of models in queueing and reliability theory is given in (261, while a survey on fast

simulation of reliability models is given in [321. Relevant references on the use of importance

sampling in queueing models include [1, 2, 3, 17, 18, 19, 22, 28, 29, 33, 34, 35, 37].

In this paper, we consider simulation of a single switch, the architecture and control of

which has been proposed for use in ATM networks [15, 16]. The switch operates in discrete

time. It is fed by K (K > 1) independent streams of traffic. Each stream is designated as

being either a high priority or low priority stream. The switch can service up to c (c > 1)

packets in each unit of time. The switch has a buffer of size B = B1 + B2. Whenever

the queue length (buffer contents) is less than B1, then both high and low priority traffic

streams are accepted by the switch. However, when the queue length is between B, and

B1 + B2 , low priority arrivals are rejected and only high priority arrivals are admitted to

the buffer. When the queue length exceeds B1 + B2 , both low and high priority packets are

rejected. We will consider estimating the loss rate of high priority packets.

In order to model realistic situations, it is necessary to consider the case when the arrival

streams contain autocorrelation, as may occur in the transfer of video data. Although

somewhat more general arrival processes can be handled, for simplicity of notation, we wil

consider the case when each arrival stream is governed by a Markov chain. If the number of

sources K is large, and if B, + B 2 is large, then exact analysis of this model is numerically

infeasible due to the problem of state space size explosion. While a "fluid" approximation

to this "cell" based model can be formulated and solved (if K is not too large) [15, 16],

the difference between performance measures of the fluid and cell models is neither well

understood nor easily quantified. (Indeed, one application of this paper is to facilitate such

an understanding.)

Fast simulation of such a switch without priorities (i.e., all packets are high priority

and B2 = 0) was considered in [9, 10]. In those papers, the asymptotically optimal (as
Codel
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B --. oo) importance sampling change of measure was described. (Here, asymptotically

optimal means that the variance of the estimate goes to zero at the fastest possible rate.)

This change of measure is closely related to the Girtner-Ellis theorem and the theory of large

deviations for Markov additive processes [3, 6, 7, 13, 20, 30, 36]. The relationship between
"effective bandwidths" (see, e.g., [8, 14, 21, 24, 27, 39]) and asymptotically optimal fast

simulation is also explored in [9, 101. (The theory of effective bandwidths deals with the

rate at which large queue length probabilities decay.)

In this paper, we show how the results of [9, 10] can be extended to the switch with

priorities. The extension is unusual in several respects. First, it requires piecing together

two different importance sampling changes of measure: the first involving both high and low

priority packets so as to bring the queue length up to level B 1, the second involving only the

high priority packets so as to increase the queue length from Bi to Bi + B2 . Assuming that

the queue is stable when fed with both high and low priority traffic, both of these events

are rare and need to be simulated differently. Second, additional care has to be taken in

this second phase, since once the system reaches B 1, it may hover there for some period

before ascending to B1 + B2 (assuming it does reach the higher level). In this paper, we

describe an asymptotically optimal (as both B, and B2 -- oo) simulation algorithm for this

problem.

The rest of the paper is organized as follows. In Section 2, the general technique of

importance sampling and its application to the single priority switch is reviewed. In Section

3 we describe how to extend this approach to the switch with priorities. Experimental results

are given in Section 4. The paper is then summarized in Section 5.

2 Background

To demonstrate the difficulty involved in simulating rare events, consider a simple example

of estimating the probability 7B of an event RL; that becomes rarer and rarer as B --+ co,

i.e., limB-..o 7B = 0. Suppose, for simplicity, that 7B can be written as

- f = /1{. 5 )P(X)dX = Ep[1{XE~ 1 1 (1)

where the subscript p denotes sampling from the given input density p and lE 3 ) is the

indicator of the rare set RB, i.e., l(p ) = 1 if x E Ra and l =zes) = 0 if X ý RL.

The standard simulation estimate of 7tB is 1B = (1/N) E_= I,, where Xi... ., XN are

sampled from the density p and In = ljXEs). Then Ep[jB] = -y and the variance of 1B

is 7B(I - 7 B)/N. The relative error, defined to be the standard deviation divided by the
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expected value, is proportional to I/•vfI which, for any fixed sample size N, approaches

oc as B --+ oo. This means that very large sample sizes are required to achieve accurate

estimates of 7B as B -- 0o.

Importance sampling, when applied properly, can avoid this problem. Consider the

integral representation for 7B in Equation 1. Multiplying and dividing the integrand by

another density function p'(z) yields

78= Jl{EIy)!Ž±p'(?)dz = fXo[ [lpxeix= E1x X(2)

where L(z) = p(z)/p'(z) is called the likelihood ratio and the subscript p' denotes sampling

from the density p. Equatioa 2 is valid so long as p'(z) > 0 for all z E RB such that

p(x) > 0. Importance sampling is based on Equation 2 and can be described as follows.

Draw N samples X 1 ,.. ., XN using density ,Y and define Z, = LI, where Ln = L(X,).

Then, by Equation 2, Ep,[Zn] = 7B. Thus an unbiased (and strongly consistent as N -+ oo)

estimate of 7B is given by

INN
!Bi F, =' LIn (3)

n ---- n ----

i.e., 7B can be estimated by simulating a random variable with a different density and

unbiasing the output by multiplying by the likelihood ratio. Most papers on importance

sampling deal with how to choose a change of measure (in this case the density p'(x)) so

as to obtain variance reduction. In general, importance sampling must be applied with

great care, since there are examples when it increases the variance, and, in some cases, it

can even make the variance infinite. However, variance reduction is obtained by making

the likelihood ratio small on R 8 , which, roughly speaking, is accomplished by making P'(x)

large for x E R8 , i.e., by picking p' so as to make the rare event RB likely to happen.

Suppose there are constants d, and d2 and a function f(B) such that f(B) --. 0 as B --+ xo

and

dif(B) <_ L(X) <_ d2f(B) (4)

for all X E R8 , and P'(RB) = Ep,[lfx6 7 RB}] stays bounded away from zero as B -. 0o.

Then 7/B = E,,[L.I,] >_ dif(B)P'(Rs) and Ep,[(LnIn) 2] < (d2f(B))2 . Combining these

two facts implies that the relative error of 7B(p) remains bounded as B -+ 0o, i.e.,

lir sup Standard Deviation[IB(p')] < 00 (5)

B-oo 7B

and we say the importance sampling change of measure p' has "bounded relative error."

This implies that only a fixed sample size is required to obtain estimates of 7B of a given
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precision, no matter how rare Re is. Such an estimate is also asymptotically optimal, in

the sense that its second moment approaches zero at the fastest possible rate, [f(B)]2 . Note

that bounded relative error is also obtained if df(B) < L(X) <_ Df(B) for all X E RL

where D is a random variable such that Ep,[D 21 < 0o.

To estimate the steady state packet loss rate, r, we exploit a ratio formula [5, 11] that is

an extension of the ratio formula that holds in regenerative systems [12, 38]. (While, with

multiple Markovian sources the model may theoretically regenerative, the regenerations may

occur so infrequently as to make the regenerative method useless for practical purposes.)

For some subset, A, of the state space define A-cycles to begin whenever the process enters

A. (We will choose A to correspond to an empty buffer.) Then

"r = (6)

where Y is the number of packets lost during an A-cycle and a is the number of packets that

arrive during an A-cycle. In Equation 6, the initial distribution is the stationary distribution

conditioned on the process just entering A. Successive A-cycles are identically distributed,

but are not independent as they would be in the regenerative method. For large buffer sizes,

the event R8 = (Y > 0} is a rare event; R5 is the event that, starting with an empty buffer,

the buffer reaches size B before emptying. Importance sampling can be used to estimate

the numerator, while standard simulation can be used to estimate the denominator. In

particular, E[Y] = E[YI7ZL;P(1Zs). Estimation of E[Y] is difficult because P(RB) is small.

Therefore we will concentrate on asymptotically optimal procedures for estimating P(IZL).

We next review how to estimate P(Rs) for the case of a switch of size B without

priority classes. The model is a discrete time queueing model having K independent (po-

tentially) heterogeneous Markovian sources. (Somewhat more general arrival processes can

be handled; see [9, 10].) The switch can service up to c (c > 1) packets in each time

slot. Let ak(t) denote the number of packets from source k that arrive during time slot

t. Let a(t) = al (t) + ... + aK(t) denote the total number of arrivals during time slot t,

Ak(t) = ak(1) + ... + ak(t) denote the total number of source k arrivals in the interval

[1, t], and A(t) = A,(t) + ... + AO(t) denote the total number of arrivals during the inter-

val [l,t]. If Q(t) denotes the queue length at time t, then Q(t) is given by Lindley type

recursion Q(t + 1) = [max(Q(t) + ait + 1), B) - c]+; this recursion takes into account the

finite buffer of capacity B. For source k, there is an environment variable Xk(t) describing

the state of the source. The distribution of arrivals has a Markovian structure given by

Pk(a,jli) = P(ak(t) = a, Xk(t) = jIXk(t - 1) = i) (0 < a < b, 1 < i,j < M) where b and

M are finite constants. To apply importance sampling, we draw on large deviations results
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for Markov additive processes. Define the 9-conjugate process (the exponentially twisted,

or tilted, distribution) with parameter 9, as follows. Let Ak(9) be the spectral radius of the

matrix &

Ai,,(ij) = Ije**Pk(ajli) (7)
4=0

and let hk(i, 9) be the corresponding eigenvector. (We assume that Ak,D(i, j) is irreducible

so that, by the Perron-Frobenius theorem, Ak(O) is real valued and hk(i, 9) > 0.) Thus

M
>Ak,A(i, j)hk(j, 0) = A,(O)h&(i,0). (8)

The twisted distribution for source k is defined by
Pk,o(a, jli) = Pv(ak(t) = a, Xk(t) = jlXk(t - 1) = i) = e*'Pk(a'jli)hk(j,O) 9

Ak(O)hk(i,*) '

which is seen to be a probability distribution by Equations 7 and 8. Each arrival process

will be simulated (independently) using the same twisting parameter 0 for some as yet

unspecified value of 9. Because of the form of P&,e(a,jli), the likelihood ratio after T

transitions has a simple form:

L(O, T) = ['tK=, n T:I ýk(,toX0 t-A)) (10)

= I[K Ak(9)Te-OAk(T) 1k!A.01

= exp {-OA(T) + T K= og(Ad())} H(9, T)

where H(0,T) = I-K I hk(Xk(O),9)/hk(Xk(T),0).

Suppose the queue is empty at time 0 and the event Rgj occurs at time TB, i.e., the

queue length first reaches or exceeds level B at time TB and is non-empty in the interval

[I,TBI. Then there are exactly c x TB departures in [I,TB] and, since Q(TB) >_ B, we

must have A(TB) >_ B + cTB. Let O(TB) be the (nonnegative) "overshoot" defined by

A(TB) = O(TB) + B + cTB. Thus, by Equation 10

L(O, TB) = exp {OB- O(TB)+ [LfIog(Ak(9))-Oc] TB} H(O,TB). (11)

By setting 0 = 8* where 0* satisfies

KIlg(A(")) - c (12)

k=-i



(assuming it exists) results in the further simplification that

L($*, TB) = e-*rB-#*O(TD)H("*,TB). (13)

Because the state space of each source is finite, both H(O*,TB) and O(TB) are bounded.

Thus, on IS, there exist constants d, and d2 such that

die-B < L(#*,TB) •5 d2e- 9 . (14)

Furthermore, it can be shown that the queue is unstable when simulated with this value of

8* and thus Pe.(Ro) stays bounded away from zero. Thus, importance sampling with 9*

is asymptotically optimal for estimating P(Rt8 ) and limB--,.o log(P(0ZB))/B = -0*. Note

that while the decay rate of P(Ra), -P*, is known, the constant in front of it is unknown;

in essence, importance sampling is estimating this constant.

In this example, the effective bandwidth of source k is known to be a•(O) = log(,k(0))/e

and the effective bandwidth of all the sources is a*(9) = a•(O) + ... + ak(O). Note that

to find the optimal importance sampling change of measure requires solving Equation 12,

a*(#*) = c, a nonlinear equation involving the spectral radiuses of the sources.

A "splitting" technique [9, 31] can be used to efficiently estimate both E[Y] and E[a].

The process is simulated (without importance sampling) until it is approximately in steady

state. Then whenever the process enters A, two A-cycles are simulated using the same

starting conditions; one using importance sampling and one without using importance sam-

pling. These provide samples for the ratio estimate. Also, the A-cycle simulated without

importance sampling provides a starting point (with approximately the steady state distri-

bution on A) for the next pair of samples. In particular, let Yi, ai, and Li be the samples of

Y, a and the likelihood ratio, respectively, obtained from the i-th pair of A-cycles. Then,

the estimate of r is given by

(15)

Because the A-cycles are not independent and identically distributed, the method of batch

means [4] can be used for variance estimation.

3 Fast Simulation of the Shared Buffer Switch

Let us now turn to the simulation of the shared buffer switch. Let W denote the set of indices

of high priority arrival streams and let C denote the set of indices of low priority arrival

streams. Let a4(9) = "{kE7j) ak(9) be the effective bandwidth of the high priority streams

6



and let a(8() = •{kEC) a;(O) be the effective bandwidth of the low priority streams. Note

that a*(O) = a•(O) + aj(O).

We again consider efficient estimation of R-8 , which is the event that, starting empty,

the buffer reaches size B = B, + B2 before becoming empty. This event entails first reaching

level B1 and then reaching B. On an A-cycle, let J be the (random) number of upcrossings

of level B 1; on Rf, J > 1. Let F be the upcrossing index on which the buffer first reaches

B, i.e., if the queue first reaches B after the j-th upcrossing of B1 but before the (j + 1)-st

upcrossing (assuming it exists), then F = j. (If the buffer level B is not hit, define F = oo.)

Note that
J 00 00

' = E= l{F=jj•J} = 1 F=1} (16)
j=1 j=1 j=1

since if F = j then j _< J is automatically satisfied. Thus, assuming the A-cycle is started

in the stationary distribution,

00 00 00

P(R)-[) = E[E [{F=i}]-- E[1 ] = P(F = j), (17)
j= j=l j--=1

i.e., E"1 1{F=j} is an unbiased estimate of P(Ro8). Note that, given J Ž 1, the event that

J > 1 may not be rare, i.e., given at least one upcrossing of B1 , there may be many up-

crossings of B1 . This complicates the application of importance sampling, because once the

process crosses B1, just pushing the process immediately towards B (using an appropriate

change of measure) will not work well (since doing so will not produce accurate estimates

of P(F = j) for j > 1).

One may also look at this in another way. For each j, the optimal importance sampling

distribution for estimating P(F = j) is different. Also there are infinitely many P(F = j)'s,

so one cannot run a different simulation for estimating each of the P(F = j)'s. The

technique described below provides a way out of this problem.

We proceed as follows. We first use importance sampling to move the system up to

level B 1. When B1 is crossed we turn off importance sampling until the end of the A-cycle

is reached. We call this the base path. This base path is used to generate samples of J,

the number of upcrossings of B1 . Whenever the base path crosses B1 (including the first

upcrossing), we "split" the base path. On upcrossing j (j = 1,..., J) importance sampling

is applied on the "j-th split path" to try to bring the system up to level B during this j-th

upcrossing of B1 . The initial conditions of the j-th split path are the same as that of the

base path just after it crosses B1 for the j-th time. The j-th split path is simulated until

either B is hit or the queue length drops below B 1, whichever comes first. This splitting of

the base path is illustrated in Figure 1.
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Let Lo denote the likelihood ratio during the buildup from 0 to B, and Lj denote the

likelihood ratio during the j-th split path. Define

J 00 00

Z = ZLoLi 2 ,c,) I - LoLilf{ nC,)fl{j<j) E LoLl (18)
3=1 1---- j=1i

where IRj is the event that the j-th split path hits B before downcrossing B1 and C, is

the event that the base cycle has not hit B before the start of the j-th split path, i.e.,

Ci = f F > j} n j _5 J). With this notation, we associate the random variables F and

J only with the base path, and not the split paths. Then LoLilf1 ,•c, 1 is an unbiased

estimate of P(F = j). This is because, the part of base path from the beginning of the

A- cycle until the j-th split, combined with the j-th split path, may be viewed as a new

base path (that also has J > j) that has been generated using the following change of

measure: at the beginning of the A-cycle, push the the process towards B1 and then wait

until B, is upcrossed j - 1 times more before pushing it towards B. Denote this change of

measure by pj. The random variable 1({,)e,} defined on the original A-cycle with split

paths, is equivalent to the random variable I{F=j) defined on this new base path. Then we

get unbiasedness from the fact that

Ep•[LoLjIfF=j)] = E[IfF=j)] = P(F = j). (19)

Thus, Z is an unbiased estimate of P(1Z). From Equation 18 we see that we need not

generate split paths off the base path if the base path has already hit level B.

We now turn to the specifics of how importance sampling is applied. On the build-up

from 0 to B1, the queue behaves identically to the queue analyzed in Section 2. Thus

an asymptotically optimal estimate of P(J > 1) (hitting B1 ) is obtained by exponential

twisting of both the high and low priority arrival streams with parameter 09 defined to be

the solution of

a* ) = (0T) + a(((0G) = c, (20)

assuming such a r, exists. (Assuming it exists, 80 > 0 since the queue is stable.) In

particular, there exist constants d, and d2 such that

die-0;BI < Lo :_ d2e-B1. (21)

Similarly, during the j-th upcrossing of B1 , the system behaves like a queue with only high

priority arrivals building up from some level Oj to B2 (without going below 0) where Oj is

the overshoot on the j-th upcrossing of B1. Since the sources are finite, there exists some
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constant d such that Oj < d. Thus exponential twisting of the high priority streams with

parameter 9 defined to be the solution (assuming it exists) of

aQ(82) = C (22)

should be effective for large B2 . (Again, assuming it exists, 9 > 0 since the queue is stable.)

During this phase, low priority streams are simulated from their given distributions (and

therefore do not contribute to the likelihood ratio). To make this more precise, if the time

axis is renumbered so that the j-th upcrossing of B, occurs at time 0 and level B, + B2 is

first hit on this up-crossing at time TB, then the number of high priority arrivals in [1, TB]

is between B2 - d + TBc and B2 + TBc + d, corresponding to the bounding cases that (i)

Oj = d and the overshoot upon hitting B is zero, and (ii) O = 0 and the overshoot upon

hitting B is d (its maximum), respectively. Thus when 0 = 02, there exist constants d3 and

d4 such that on R-i n Ci
d3 e-O*B2 < Li :5 d4 e-#2B2. (23)

In addition, the queue is unstable when simulated with at 09. Therefore, by Equation 18,

the importance sampling estimate (from a single A-cycle) satisfies

l{71Z 1rC}did3e-°9 B1-sGB2 < Z < d2 d4Je-s; B1 9-'B2. (24)

The event R, n C1 is simply the event that the base path hits B1 and the first split path

hits B. Thus

P(1JZ) -_ d1d3 Peo,o;(7Z1 n C1)e-O*B1G-2B2. (25)

Note that C1 = {J > 1}, so Pe;,o2(7Rl nC 1) = Po;(7*RIIJ > 1)Peo(J > 1). Under importance

sampling Poe(7•ZIJ > 1) and Peo (J > 1) are both bounded away from zero, since, as

described above, they both represent the probability that an appropriate unstable queue

reaches some queue length before returning to zero. (Note that the distribution of J depends

only on 09, since the base path turns importance sampling off after B, is crossed for the

first time.) Similarly, by Equation 24,

Eeoe; [Z 2] < [d2d4 ]2Eeo[J2Ie 2°B- 2 oR2 (26)

Thus if, Eo;[J 2] < oc, the importance sampling estimate of P(7•8 ) has bounded relative

error (and is thus asymptotically optimal). It is intuitively clear that this must be so, since

(J - 1) is the number of upcrossings of level B, of a queue with negative drift started just

above level B1 . A proof that E#;[J 2] < oo is given in Appendix A. To formalize this result,

we state the following theorem.
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Theorem 1 Let B, = f B and B2 = (l - f)B for some constant f, 0 < f < I. If there

exist constants r, > 0 and r > 0 such that a4(rj) + aZ(9) = c and aý(9) = c, then

lim log(P_ )) 0 1 9f- 0(1 - f) (27)Bý-.'O B
Iog(E0#,0•#!Z2]

lim =,. P -29f - 29(l - f) (28)B--oo B

i.e., the importance sampling estimate is asymptotically optimal and has bounded relative

error.

4 Experimental Results

In this section we will present experimental results using the importance sampling algorithm

described in the previous section. As is Section 2 define an A-cycle to begin whenever the

process enters the set of states where the buffer is empty. Also, if a denotes the number

of high priority arrivals in a typical A-cycle and Y denotes the number of high priority

packets lost in an A-cycle, then the long run fraction of high priority packets lost is given

by Equation 6.

As mentioned ip Section 2, asymptotically optimal changes of measure for estimating

P(7Zs) (where now B = B1 +B 2 ) also work well for estimating E[Y]. However the simulation

procedure differs slightly. Similar to Equation 17, define

J
W = E LoLjNjl{ 1i, ,) (29)

j-=1

where Nj is the number of high priority packets lost in the j-th split path until it hits

the buffer empty state. Then W is an unbiased estimate (from a single A-cycle) of E[Y].

Unlike the simulation for P(1ZB) (where we stop simulating the j-th split path once it hits

level B or downcrosses level B 1 ) if the j-th split path hits B before it downcrosses level B1 ,

then we have to simulate it until the buffer empty state (in order to get a sample of Nj).

We adopt the following simulation procedure. We first run enough A-cycles so that

the process (approximately) reaches steady state. Then we start collecting samples of W

and a using the splitting technique referred to at the end of Section 2, i.e., whenever the

process enters A we generate two parallel cycles, one with importance sampling and the

other without importance sampling. The one with importance sampling is used to generate

samples of W and the one without importance sampling is used to generate samples of a

as well as to get a starting point for the next pair of A-cycles. From n such sets of parallel
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cycles, samples W 1,..., W, and an,..., an of W and a, respectively, are obtained. Then r is

estimated by P.(0*, 9) = E&= Wi/ E=! aj. However, since the successive Wi's ( and ai's)

are not independent, the method of batch means is used to construct confidence intervals.

We will now briefly review this procedure.

Divide Wj,..., W,, and an,..., a,, into b batches of size k - n/b. (Assume that n/bis an integer.) Let bi Wil an t i=Et
isaninteger.)fLe-1)k+ W=/k and 7 = jf(-)+ /k, i.e., these are the

sample means corresponding to the ith batch. The method of batch means works on the

assumption that for k sufficiently large, the successive 6j's and 7j's are (approximately)
normally distributed and independent. Hence if we estimate r by f = 6- / 3 7

(this is the same estimator as when we did not use batch means), then, if b is also large,

vrb( - r) % N(O, a 2) where

a2 Var[63 ] + 2rCov[6j, -yj] + r2 Var[y,] (30)
-- E[-yj]

Then an approximate 99% confidence interval can be constructed as (f - 2.56 V'W-7I, f +

2.56•'-7l). The relative error RE is thus defined to be 2.56Vo-(7/r. In practice, since

or2 is unknown, it must be estimated, which can be done using the standard estimators of

all the quantities in Equation 30.

We now consider two examples. In the first example there are four input sources, three

of which are high priority and one of which is low priority. Each source is a two state

Markov modulated process, with a deterministic number of arrivals in each state; in state 1

there is no arrival and in state 2 there is exactly 1 arrival. Let p9 denote the the transition

matrix of the state of the kth source, i.e., p(k) P(Xk(t) =jXk(t- 1) = i). For 1 < k < 3,

pik) -07 and - 0.5; fork =4,(k) = 0.9 and ,(k) -05 (This notation can be easily

mapped to the notation of Section 2.) Note that the individual input streams are positively
correlated, i.e., p,(k) +,(k)

cre t i2 > 1 for all k. The total high priority and low priority arrival rate

can be computed to be 1.125 and 0.167 respectively. We choose the switch speed c = 2.

For such two state Markov processes, the appropriate Eigenvalues are known in closed form

(see, e.g., [9, 10]). Using Equation 20 and Equation 22, the 0e and 0e were computed to be

0.75 and 2.00, respectively.

We ran experiments for several values of B1 and B2; we fixed f = 0.5 and varied B.

Note that the Markov chain model for this example will have 8(B + 1) states and it is not

very difficult to solve this particular model numerically (for moderate values of B). We use

this model mainly as a means of comparing the effectiveness of our importance sampling

algorithm to that of standard simulation; for moderate values of B, the loss rates can be
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accurately estimated within a reasonable amount of time using standard simulation. In

each experiment (using importance sampling) we first simulated 300 consecutive A-cycles

so that the process (approximately) reaches steady state. Then we simulated for 60,000 A-

cycle pairs. We used b = 2,000 batches with 30 A-cycle pairs in each batch. (The variance

estimate was fairly insensitive to the batch size for the same total number of A-cycles). For

the sake of completeness, we also estimated the loss probabilities (r1 ) of the low priority

packets using the same simulation runs; we used the A-cycles for the estimation of the

denominator (in Equation 6) to get samples of the total number of low priority arrivals in

an A-cycle and we used the base sample path of the cycle used for the estimation of the

numerator, to get samples of the number of low priority arrivals lost during an A-cycle.

Results for these experiments are presented in Table 1. Note how the RE using impor-

tance sampling remains almost constant as B becomes larger. For comparison purposes we

also ran standard simulations for the same CPU time that was used for the importance sam-

pling case. By standard simulation we mean that (after discarding the first 300 A-cycles)

at each entrance to the set A, instead of simulating a pair of A-cycles, we only simulate the

A-cycle with no importance sampling. In addition to getting samples of the total number

of arrivals of each priority level from this A-cycle, we also obtain samples of the number

lost. For a given number of samples, i.e, pair of numerator/denominator A-cycle samples,

importance sampling requires twice the number of A-cycle simulations as compared to

standard simulation. Also, an A-cycle with importance sampling is more costly to simu-

late due to the split paths and the computation of the likelihood ratios. However, as we

can see in Table 1, these inefficiencies in the importance sampling method are insignificant

as compared to the speedup gained due to the variance reduction. Note that with standard

simulation, in many cases, we do not even get any samples of buffer overflow in an A-cycle.

(In the tables, such cases are indicated by a ±?. The superscript * in some of the table

entries means that the estimate had not yet stabilized.)

To compute speedup, we need to compute the ratio of the CPU time required by standard

simulation to achieve a given level of accuracy to the CPU time required by importance

sampling to achieve the same level of accuracy. Due to the large amount of CPU time it

took for the standard simulation estimates to stabilize, we were not able to compute the

speedup for all cases, although this was possible for B = 6 and B = 8. For B = 6, for the

same amount of CPU time, the RE of the standard simulation estimate (for r) is about

6.7 (=20.2/3) times larger than that of the importance sampling estimate. Since the RE

decreases at rate I/x/sample size, the standard simulation would have to be run about 45
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(• 6.72) times longer in order to achieve the same RE as using importance sampling. Thus

the B = 6 speedup is about 45. For B = 8, the variance estimate using standard simulation

had not yet stabilized. For this case, we continued the standard simulation run until we

obtained the same RE (±3.2%) as that obtained in Table 1 using importance sampling. The

CPU time required to achieve this same accuracy was about 450 times greater than that

measured for importance sampling, i.e., the B = 8 speedup is about 450. (The standard

simulation estimate of r was 3.13 x 10' ± 3.2% compared to 3.11 x 10-5 ± 3.2% using

importance sampling.) As r decreases, the speedup using importance sampling increases,

although the speedup becomes more difficult to compute.

Next we consider a larger example with 16 two-state Markov modulated input sources

(of the same type as in the previous example). The pil's and P22'S of the 16 sources were

(0.7,0.6, 0.6,0.5,0.8,0.8,0.8,0.8,0.8,0.7,0.7,0.7,0.9,0.9,0.9,0.9)

and

(0.5,0.8,0.6,0.9,0.3,0.6,0.6,0.4,0.8,0.5,0.9,0.6,0.7,0.8,0.6,0.5),

respectively. The first twelve sources are considered to be of high priority with a total

arrival rate of 5.57 and the last four sources are considered to be of low priority with a

total arrival rate of 0.95. The switch speed c was chosen to be 8. Using Equation 20 and

Equations 22 the 09 and 0e were computed as 0.34375 and 1.0625, respectively.

We again estimated loss probabilities for several values of B and a fixed f. Note that

the Markov chain model for this example will have approximately 21'(B + 1) states and

hence it is very difficult to compute the loss probabilities numerically. Therefore, simulation

using importance sampling is very useful. The initial transient deletion period was again

300 A-cycles. The simulation was run for 150,000 A-cycle pairs, i.e., 5,000 batches with 30

A-cycle pairs in each batch. Notice again how the RE using importance sampling remains

bounded as B - oo whereas with standard simulation, in all cases, we did not observe

any high priority packet losses. With importance sampling, loss rates as low as 10-23 were

estimated in a reasonable amount of time with a high degree of accuracy.

5 Conclusions

This paper has considered the application of importance sampling to estimating the packet

loss rate in an ATM communications switch having a shared buffer and two priority classes.

When the buffer contents reach a threshold level, B1, low priority packets are rejected. When
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the buffer contents reaches its capacity, B, + B2, high priority packets are rejected. The

object of the analysis is to estimate the loss rate of high priority packets. An asymptotically

optimal importance sampling approach was described. Experiments using this approach

showed that many orders of magnitude speedup, as compared to standard simulation, can

be obtained. The speedup increases as the packet loss rate decreases.

This importance sampling approach is unusual in several respects:

1. The rare event of interest occurs because of the occurrence of two different events,

each of which is rare. Importance sampling has to be done so as to make each of these

rare events happen, one after the other. Since the best change of measure is different

for each of these rare events, the simulation program has to shift from one importance

sampling strategy to another at appropriate instances in time.

2. The situation is further complicated by the fact that the second rare event may not

happen immediately after the first rare event. As a result, a more complicated "split-

ting" procedure needs to be introduced so as to get an efficient overall simulation

procedure.

Based on the analysis, it is clear that this approach can be extended to the case when

there are more than two priority levels, e.g., three priority levels with an admission policy

determined by three threshold levels, B 1, B, + B2 , and B1 + B2 + B3 . There would be three

different values of 0, 9•, 09 and 09, with which to do importance sampling. Exponential

twisting of the high, medium and low priority streams with parameter O* satisfying at(0 9*)+

a4(08) + aý(O*) = c is done initially at the start of an A-cycle until B1 is reached. Then

exponential twisting of the high and medium priority streams with parameter 0e satisfying

ai(O;) + aý(0B) = c is done until B, + B2 is reached. Finally, exponential twisting of the

high priority streams with parameter 93 satisfying ai(0*) = c is done until B1 + B2 + B3

is reached. In addition, a multi-level splitting procedure needs to be applied; the j-th

split path obtained on the j-th upcrossing of B1 also needs to be split upon upcrossings of

B1 + B2. This results in a rather complicated simulation algorithm.

Other extensions are not so clear. For example, suppose when the buffer reaches level

B1, the switch displaces low priority packets already in the buffer with high priority arriving

packets. Now the change of measure required to move the buffer from level B1 to Bt + B2

is not obvious.

This paper thus illustrates both the potential and limitations of importance sampling.

In certain applications, there is enough structure so that highly effective importance sam-
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pling schemes can be devised. In such cases, importance sampling results in spectacular

improvements over standard simulation. However, while some applications of genuine inter-

est, such as the one considered here, can be handled optimally, the class of such applications

is rather narrow. Furthermore, small changes in the problem structure can easily lead to

models for which the optimal, or even a good, importance sampling change of measure is

unknown.

A Appendix A

In this appendix we prove Eo; [J 2 ] < 00. Our approach is based on a sequence of stochastic

comparisons. We note that J - I is bounded above by the last time that the queue is

below B, in an A-cycle when started from the level B, + d (where d is the bound for the

overshoot when level B, is upcrossed). Denote this last time by rl. Now we consider an

auxiliary queue in which the lower priority arrival streams are allowed to be stored in the

buffer even when the buffer reaches the level B1 . Let r2 be the last time that the auxiliary

queue is below B1 in an A-cycle when started from B, + d. Since there are more arrivals

in the auxiliary queue than the original queue, it then follows from a standard sample path

argument that r2 is stochastically larger than or equal to rl, i.e., r 2 _>st rl. Now we remove

both boundaries at levels B and 0 of the auxiliary queue and consider the corresponding

random walk started from the same level B, + d. Let "3 be the last time that the random

walk is below level B1 . Clearly, 7"3 2 r 2 since there are no losses in the random walk and

there are sample paths that the random walk might reach level 0 and then bounce back to

level B1. Now we will show that the distribution of r 3 is bounded by an exponential tail and

hence all the moments exist. Via the stochastic comparisons made above, all the moments

of J - 1 exist and Ee; [j 2 ] < 00.

To show that the tail distribution of i3 is bounded exponentially, let A(t) denote the

total number of arrivals in the interval [1, t]. Thus, the level of the random walk at time t is

A(i)-ct+B1 +d. From the definition for the last time, P(r3 > s) = P(maxt>,[A(t)-ct+d]

0). Note that for all e > 0 and 0 > 0

P(max[A(t) - ct + d] ! O) = P(max[A(t) - ct + d + et - ct] 0) (31)

:_ P(max[A(t) - (c - c)t + d] ( Es) (32)

<P(max[A(t) - (c - c)t + d] ( as) (33)
t>o

= P (max[exp(O(A(t) - (c - e)t + d))] 2! exp(Egs)). (34)
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Applying Markov's inequality and replacing the maximum by the sum yields

P(,r3 > a) .5 o e-&ed 1 Ee#(A(t)-(c-cQt. (35)

t>o

From Equation 10, it follows that

-- = Ee!L(90, t)e'(A)(--))] (36)

= Ee(H(9, t)e("(')-(-)'] (37)

Since the state space of each source is finite, H(9,t) is bounded. Thus, there exists a

constant d2(0) < oo for 9 > 0 such that H(e, t) : d2(f). Also, since r9 > 0 is the solution

of a*(O) = c, for any t sufficiently small, there exists a 0 < 9 < r, such that a*(*') < c - 2(.

Thus,

E[eV(A(t)-(c-)t)] 5 d 2(9')e-'. (38)

In conjunction with (35), one has

P("3 > -) _5 0(0)e-fs, (39)

where

0(0') = d2(*')e'(d-)(1 - e-re)-I.0 (40)

elB I 1 1 Quantity Importance Sampling Standard Simulation Ess
fl. j flEstimated Estimate Estimate I

0.5T~~ r~ 4.34 x 10-1 ± 3.0% 4.7 2 x 10" I
n11 " 3.72 x 10-1 -4.7% 3.92 xI---6.1%

1I. 8 I0.5 r 3.11 x 10-5±-3.2% 4.19x10-54-68"4%*
l I r 1.59Ix 10-± 4.7% 1.73 x 10-14- 8.9%

W20 0o.5 5.47 x 10-12 3.8% 0.00±?
III ri ., U 9.53 x 10- 4 5.1% 12.98 x lO-' ± 7o.8%"IIII30 10.5 II r II1-24 x 10-:: 4.4% [ 0.004-? ' ]

II r , II1.2 x 1o-0 5.0%I 0.00±?II
VI0.][ 3.02 x 10-73 ±4.8% 0.00±?

11 ri 1.79 x 10-k 45.2% 0.00-k?

Table 1: Estimates of steady-state loss probabilities in the small example. Importance
sampling and standard simulation were run for the same amount of CPU time.
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II l' [I f im antity Importance Sampling St"dSimui°atIoi
Ii I Fim Estimate J 0•m aJe ,
P411/3 r H1.13 x 10' ± 4.4% 0.00±?77ff

1 r- 1.15 x 10-k +2.2% 1.17 x 10- 4- 3.9%
If3011/31 r 8.63 x 10-10 4.8% 0.00±? f

r, .5.74 x 10- 42.2% 5.96 x 10-3 ± 5.1"
145 /l3 r 4.32 x 0 -1 :2x0•0.6% III

11 rJ 1.04 x 10- ± 2.2% 1.06 x 10-ý ± 10.0%
60~b 1/311~ 2.15 x 10' ý 49% 0.00±? 7fl

rI 1.94 x 10" ± 2.2% 2.01 x I10± 19.8!I"

Table 2: Estimates of steady-state loss probabilities in the large example. Importance
sampling and standard simulation were run for the same amount of CPU time.

BI+ B2

1 2

1-st Split Path / 2-nd Split Path

L 
L 2

B1

Base Path
L0

Figure 1: The base path and the split paths for the case of J = 2 upcrossing s of B1 .
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